An expression of the general common least-squares solution to a pair of matrix equations with applications
نویسندگان
چکیده
منابع مشابه
Ranks of the common solution to some quaternion matrix equations with applications
We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...
متن کاملThe least-square bisymmetric solution to a quaternion matrix equation with applications
In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...
متن کاملranks of the common solution to some quaternion matrix equations with applications
we derive the formulas of the maximal andminimal ranks of four real matrices $x_{1},x_{2},x_{3}$ and $x_{4}$in common solution $x=x_{1}+x_{2}i+x_{3}j+x_{4}k$ to quaternionmatrix equations $a_{1}x=c_{1},xb_{2}=c_{2},a_{3}xb_{3}=c_{3}$. asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. we give the exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.03.096